The median filter scheme is an elegant, monotone discretization of the level set formulation of motion by mean curvature. It turns out to evolve every level set of the initial condition precisely by another class of methods known as threshold dynamics. Median filters are, in other words, the natural level set versions of threshold dynamics algorithms. Exploiting this connection, we revisit median filters in light of recent progress on the threshold dynamics method. In particular, we give a variational formulation of, and exhibit a Lyapunov function for, median filters, resulting in energy based unconditional stability properties. The connection also yields analogues of median filters in the multiphase setting of mean curvature flow of networks. These new multiphase level set methods do not require frequent redistancing, and can accommodate a wide range of surface tensions.
翻译:中位过滤器方案是一种优雅、单调的分解方法,它通过平均曲率来将运动的定级结构形成一个优雅、单调的分解。它最终使最初条件的每层都精确地通过另一种称为阈值动态的方法来演变。 中位过滤器,换句话说,是临界值动态算法的自然水平版本。 利用这一连接,我们根据临界值动态方法的最新进展重新审视中位过滤器。 特别是,我们给出了一个变异的配方,并展示了中位过滤器的Lyapunov功能,从而产生了基于能源的无条件稳定性特性。 连接还产生网络平均曲线流多阶段环境中中位过滤器的模拟值。 这些新的多阶段设定方法不需要频繁的重置,并且能够容纳广泛的表面紧张。