A confidence sequence (CS) is a sequence of confidence intervals that is valid at arbitrary data-dependent stopping times. These are useful in applications like A/B testing, multi-armed bandits, off-policy evaluation, election auditing, etc. We present three approaches to constructing a confidence sequence for the population mean, under the minimal assumption that only an upper bound $\sigma^2$ on the variance is known. While previous works rely on light-tail assumptions like boundedness or subGaussianity (under which all moments of a distribution exist), the confidence sequences in our work are able to handle data from a wide range of heavy-tailed distributions. The best among our three methods -- the Catoni-style confidence sequence -- performs remarkably well in practice, essentially matching the state-of-the-art methods for $\sigma^2$-subGaussian data, and provably attains the $\sqrt{\log \log t/t}$ lower bound due to the law of the iterated logarithm. Our findings have important implications for sequential experimentation with unbounded observations, since the $\sigma^2$-bounded-variance assumption is more realistic and easier to verify than $\sigma^2$-subGaussianity (which implies the former). We also extend our methods to data with infinite variance, but having $p$-th central moment ($1<p<2$).
翻译:信任序列( CS) 是任意数据依赖性停止时间有效的信任间隔序列。 这对于A/ B测试、 多武装土匪、 退出政策评估、 选举审计等应用很有用。 我们提出三种方法来为民众构建信任序列, 前提是只知道对差异只有高约束$\ igma2$2美元这一最低假设。 虽然以前的工作依赖于像约束性或亚Gaussiaity这样的轻尾假设( 根据约束性或亚Gaussiaity( 存在分配的所有时刻), 我们工作中的信任序列能够处理来自一系列繁琐分布的数据。 我们三种方法中的最佳方法 -- -- Catoni 式的信任序列 -- -- 在实践中表现得非常好, 基本上与美元=2美元- subcal- Gusian 数据的最先进方法相匹配, 并且可能达到 $qsqrlog_ log t/ t/ t) 由于反复对日志的法律约束性较低。 我们的发现对连续实验有着重要的影响, 与无限制的观测结果 -- Catoni- sireal commeal subal subal subly (美元) subilate to the abilate subaltime subilate subilate ex extitude) ex subilate extical extime ex ex ex ex ex ex ex lautus ex ex ex ex lautus