A confidence sequence (CS) is a sequence of confidence intervals that is valid at arbitrary data-dependent stopping times. These are useful in applications like A/B testing, multi-armed bandits, off-policy evaluation, election auditing, etc. We present three approaches to constructing a confidence sequence for the population mean, under the minimal assumption that only an upper bound $\sigma^2$ on the variance is known. While previous works rely on light-tail assumptions like boundedness or subGaussianity (under which all moments of a distribution exist), the confidence sequences in our work are able to handle data from a wide range of heavy-tailed distributions. The best among our three methods -- the Catoni-style confidence sequence -- performs remarkably well in practice, essentially matching the state-of-the-art methods for $\sigma^2$-subGaussian data, and provably attains the $\sqrt{\log \log t/t}$ lower bound due to the law of the iterated logarithm. Our findings have important implications for sequential experimentation with unbounded observations, since the $\sigma^2$-bounded-variance assumption is more realistic and easier to verify than $\sigma^2$-subGaussianity (which implies the former). We also extend our methods to data with infinite variance, but having $p$-th central moment ($1<p<2$).


翻译:信任序列( CS) 是任意数据依赖性停止时间有效的信任间隔序列。 这对于A/ B测试、 多武装土匪、 退出政策评估、 选举审计等应用很有用。 我们提出三种方法来为民众构建信任序列, 前提是只知道对差异只有高约束$\ igma2$2美元这一最低假设。 虽然以前的工作依赖于像约束性或亚Gaussiaity这样的轻尾假设( 根据约束性或亚Gaussiaity( 存在分配的所有时刻), 我们工作中的信任序列能够处理来自一系列繁琐分布的数据。 我们三种方法中的最佳方法 -- -- Catoni 式的信任序列 -- -- 在实践中表现得非常好, 基本上与美元=2美元- subcal- Gusian 数据的最先进方法相匹配, 并且可能达到 $qsqrlog_ log t/ t/ t) 由于反复对日志的法律约束性较低。 我们的发现对连续实验有着重要的影响, 与无限制的观测结果 -- Catoni- sireal commeal subal subal subly (美元) subilate to the abilate subaltime subilate subilate ex extitude) ex subilate extical extime ex ex ex ex ex ex ex lautus ex ex ex ex lautus

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月30日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
50+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员