Feature-based out-of-distribution (OOD) detectors have received significant attention under the image classification setting lately. However, the practicality of these works in the object detection setting is limited due to the current lack of understanding of the characteristics of the feature space in this setting. Our approach, SAFE (Sensitivity-Aware FEatures), leverages the innate sensitivity of residual networks to detect OOD samples. Key to our method, we build on foundational theory from image classification to identify that shortcut convolutional layers followed immediately by batch normalisation are uniquely powerful at detecting OOD samples. SAFE circumvents the need for realistic OOD training data, expensive generative models and retraining of the base object detector by training a 3-layer multilayer perceptron (MLP) on the surrogate task of distinguishing noise-perturbed and clean in-distribution object detections, using only the concatenated features from the identified most sensitive layers. We show that this MLP can identify OOD object detections more reliably than previous approaches, achieving a new state-of-the-art on multiple benchmarks, e.g. reducing the FPR95 by an absolute 30% from 48.3% to 18.4% on the OpenImages dataset. We provide empirical evidence for our claims through our ablations, demonstrating that the identified critical subset of layers is disproportionately powerful at detecting OOD samples in comparison to the rest of the network.


翻译:最近,在图像分类设置方面,基于超常分布的外传(OOOD)探测器最近受到大量关注;然而,由于目前对物体探测设置中的特征空间特性缺乏了解,这些工程在物体探测设置中的实用性有限,因为目前缺乏对这一设置中特征空间特性特性的特性的了解。我们的方法是SafeE(敏化-Aware Features),利用残余网络的内在敏感性来检测OOD样品。我们的方法的关键是,从图像分类分类学中,我们基于基本理论,确定在经过批次正常化之后,紧接着批量正常化的快捷转折叠层在发现OOOD样品时具有独特的优势。 SAFE绕过现实的OOOOD培训数据、昂贵的基因化模型和基地天体探测器再培训的需要,因为目前对此处的3级多级多级显示器(MLP)的特性缺乏了解。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
0+阅读 · 2023年3月13日
Arxiv
14+阅读 · 2022年5月6日
Generalized Out-of-Distribution Detection: A Survey
Arxiv
15+阅读 · 2021年10月21日
Arxiv
38+阅读 · 2021年8月31日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员