Existing oriented object detection methods commonly use metric AP$_{50}$ to measure the performance of the model. We argue that AP$_{50}$ is inherently unsuitable for oriented object detection due to its large tolerance in angle deviation. Therefore, we advocate using high-precision metric, e.g. AP$_{75}$, to measure the performance of models. In this paper, we propose an Aspect Ratio Sensitive Oriented Object Detector with Transformer, termed ARS-DETR, which exhibits a competitive performance in high-precision oriented object detection. Specifically, a new angle classification method, calling Aspect Ratio aware Circle Smooth Label (AR-CSL), is proposed to smooth the angle label in a more reasonable way and discard the hyperparameter that introduced by previous work (e.g. CSL). Then, a rotated deformable attention module is designed to rotate the sampling points with the corresponding angles and eliminate the misalignment between region features and sampling points. Moreover, a dynamic weight coefficient according to the aspect ratio is adopted to calculate the angle loss. Comprehensive experiments on several challenging datasets show that our method achieves competitive performance on the high-precision oriented object detection task.
翻译:现有定向物体探测方法通常使用ARPA$=50美元来衡量模型的性能。我们认为,APP$=50美元本质上不适合定向物体探测,因为它在角度偏差方面有很大的容度。因此,我们主张使用高精度测量度,例如AP$=75美元,以测量模型的性能。在本文件中,我们建议使用一个与变异器的随机敏感敏感对象探测器,称为ARS-DETR,该探测器在高精度物体探测方面表现出有竞争力的性能。具体地说,建议采用一种新的角度分类方法,称为“孔比对光滑圈”(AR-CSL),以更合理的方式平滑角度标签,并放弃先前工作(如CSL)引入的超参数。然后,一个旋转式变形注意模块,用相应的角度旋转取样点,消除区域特征和取样点之间的不匹配点之间的不匹配。此外,还采用一个按方位的动态重系数来计算角损失。关于若干具有挑战性的物体的全面实验,显示我们的方法在高水平探测任务上达到了竞争性性性性。</s>