This paper derives the optimal Bayesian processing of an out-of-sequence (OOS) set of measurements in continuous-time for multiple target tracking. We consider a multi-target system modelled in continuous time that is discretised at the time steps when we receive the measurements, which are distributed according to the standard point target model. All information about this system at the sampled time steps is provided by the posterior density on the set of all trajectories. This density can be computed via the continuous-discrete trajectory Poisson multi-Bernoulli mixture (TPMBM) filter. When we receive an OOS measurement, the optimal Bayesian processing performs a retrodiction step that adds trajectory information at the OOS measurement time stamp followed by an update step. After the OOS measurement update, the posterior remains in TPMBM form. We also provide a computationally lighter alternative based on a trajectory Poisson multi-Bernoulli filter. The effectiveness of the two approaches to handle OOS measurements is evaluated via simulations.
翻译:本文是连续连续跟踪多目标跟踪的一组连续测序(OOS)的最佳巴伊西亚处理方法。 我们考虑的是,一个以连续时间为模型的多目标系统,在接收测算时,根据标准点目标模型进行分配。所有轨迹集的测序表的后方密度都提供了关于这个系统的抽样时间步骤的所有信息。这一密度可以通过连续分解轨迹Poisson多伯诺利混合物(TPMMM)过滤器计算。当我们收到对OOS的测量时,最佳的Bayesian处理过程将采取回溯步骤,在OOS测量时间标记上添加轨迹信息,然后采取更新步骤。在OOS测量更新后,后,海脊仍以TPMBM形式保存。我们还根据Poisson多伯诺利轨迹的轨迹过滤器提供了一种较轻的计算替代方法。通过模拟评估处理OOS测量的两种方法的有效性。