In this document, some general results in approximation theory and matrix analysis with applications to sparse identification of time series models and nonlinear discrete-time dynamical systems are presented. The aforementioned theoretical methods are translated into algorithms that can be used for sparse model identification of discrete-time dynamical systems, based on structured data measured from the systems. The approximation of the state-transition operators that are determined primarily by matrices of parameters to be identified based on data measured from a given system, is approached by identifying conditions for the existence of low-rank approximations of submatrices of the trajectory matrices corresponding to the measured data, that can be used to compute approximate sparse representations of the matrices of parameters. One of the main advantages of the low-rank approximation approach presented in this document, concerns the parameter estimation for linear and nonlinear models where numerical or measurement noise could affect the estimates significantly. Prototypical algorithms based on the aforementioned techniques together with some applications to approximate identification and predictive simulation of time series models with symmetries and nonlinear structured dynamical systems in theoretical physics, fluid dynamics and weather forecasting are presented.


翻译:该文件介绍了近似理论和矩阵分析的一些一般结果,这些结果有助于对时间序列模型和非线性离散动态系统进行稀少的识别,上述理论方法被转化成算法,可用于根据从这些系统测量的结构性数据对离散时间动态系统进行稀少的模式识别,主要根据根据从某一系统测量的数据确定的各种参数的矩阵确定的国家-过渡运营商的近似结果,其方法是确定与所测数据相对应的轨迹矩阵次矩阵低端近似值存在的条件,这些条件可用来计算参数矩阵的大致稀少情况。本文件提出的低级近似方法的主要优点之一是线性和非线性模型的参数估计,其中数字或测量噪音可能对估计产生显著影响。根据上述技术以及理论物理学、液体动态和天气预报中具有对称性和非线性动态系统的时间序列模型的近似识别和预测模拟的一些应用,以上述技术为依据的超典型算法和一些应用来对时间序列模型进行近似性识别和预测性模拟。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
0+阅读 · 2021年9月30日
Arxiv
9+阅读 · 2021年3月8日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员