In recent years, autonomous underwater vehicle (AUV) swarms are gradually becoming popular and have been widely promoted in ocean exploration or underwater tracking, etc. In this paper, we propose a multi-AUV cooperative underwater multi-target tracking algorithm especially when the real underwater factors are taken into account. We first give normally modelling approach for the underwater sonar-based detection and the ocean current interference on the target tracking process. Then, based on software-defined networking (SDN), we regard the AUV swarm as a underwater ad-hoc network and propose a hierarchical software-defined multi-AUV reinforcement learning (HSARL) architecture. Based on the proposed HSARL architecture, we propose the "Dynamic-Switching" mechanism, it includes "Dynamic-Switching Attention" and "Dynamic-Switching Resampling" mechanisms which accelerate the HSARL algorithm's convergence speed and effectively prevents it from getting stuck in a local optimum state. Additionally, we introduce the reward reshaping mechanism for further accelerating the convergence speed of the proposed HSARL algorithm in early phase. Finally, based on a proposed AUV classification method, we propose a cooperative tracking algorithm called Dynamic-Switching-Based MARL (DSBM)-driven tracking algorithm. Evaluation results demonstrate that our proposed DSBM tracking algorithm can perform precise underwater multi-target tracking, comparing with many of recent research products in terms of various important metrics.
翻译:暂无翻译