In this paper we develop a linear expectile hidden Markov model for the analysis of cryptocurrency time series in a risk management framework. The methodology proposed allows to focus on extreme returns and describe their temporal evolution by introducing in the model time-dependent coefficients evolving according to a latent discrete homogeneous Markov chain. As it is often used in the expectile literature, estimation of the model parameters is based on the asymmetric normal distribution. Maximum likelihood estimates are obtained via an Expectation-Maximization algorithm using efficient M-step update formulas for all parameters. We evaluate the introduced method with both artificial data under several experimental settings and real data investigating the relationship between daily Bitcoin returns and major world market indices.
翻译:在本文中,我们为分析风险管理框架中的加密货币时间序列开发了一个线性预期隐藏的Markov模型。提议的方法可以侧重于极端回报,并通过在模型中引入根据潜在离散单一的Markov链条变化的取决于时间的系数来描述其时间演变。正如在预测文献中经常使用的那样,模型参数的估算是以不对称的正常分布为基础的。通过使用所有参数的高效M级更新公式的预期-最大概率算法获得的。我们用几个实验环境中的人工数据以及调查比特币每日回报和主要世界市场指数之间关系的真实数据来评估所采用的方法。