We consider the problems of user selection and power control in wireless interference networks, comprising multiple access points (APs) communicating with a group of user equipment devices (UEs) over a shared wireless medium. To achieve a high aggregate rate, while ensuring fairness across all users, we formulate a resilient radio resource management (RRM) policy optimization problem with per-user minimum-capacity constraints that adapt to the underlying network conditions via learnable slack variables. We reformulate the problem in the Lagrangian dual domain, and show that we can parameterize the RRM policies using a finite set of parameters, which can be trained alongside the slack and dual variables via an unsupervised primal-dual approach thanks to a provably small duality gap. We use a scalable and permutation-equivariant graph neural network (GNN) architecture to parameterize the RRM policies based on a graph topology derived from the instantaneous channel conditions. Through experimental results, we verify that the minimum-capacity constraints adapt to the underlying network configurations and channel conditions. We further demonstrate that, thanks to such adaptation, our proposed method achieves a superior tradeoff between the average rate and the 5th percentile rate -- a metric that quantifies the level of fairness in the resource allocation decisions -- as compared to baseline algorithms.
翻译:我们考虑无线干扰网络中的用户选择和电力控制问题,这些网络由多个接入点(APs)与一组用户设备设备(UES)通过共享无线媒体进行通信。为了实现高总率,同时确保所有用户的公平性,我们制定了具有弹性的无线电资源管理(RRM)政策优化问题,使每个用户的最低能力限制通过可学习的松动变量适应基本网络条件。我们重新定义了拉格朗吉亚双重域的问题,并表明我们可以使用一套有限的参数来将RRM政策参数化为参数,这些参数可以通过一个不受监督的原始和双重变数同时进行训练。由于一个相当小的双重性差距,我们使用一个可扩展的和变异的图形网络神经网络(GNN)架构,根据从瞬间频道条件得出的图表表层表表表,将RM政策参数化为RM政策参数。我们通过实验结果,核实最低能力限制与基本网络配置和频道条件相适应。我们进一步证明,由于这种调整,我们提议的方法通过一种不受监督的原始原始原始和双重变数方法,通过一种不受监督的初置控的初置的初置方法,通过一种可控的初置方法,通过一种可控的双向的双向的双位法方法,通过一种可忽略的双向平均的双向的双向的双向的双向,在平均的基段之间,在平均的基调率水平的基段之间,我们,我们使用一种可变法,我们使用一种比的基的基的基的基调率率,我们法将一个可乘的基调率率率率率,我们使用一种比的基比的基比的基比的基比的基比的基的基的基的基的基的基的基的基的基的基的基的基的基调率。</s>