Learning to optimize (L2O) has recently emerged as a promising approach to solving optimization problems by exploiting the strong prediction power of neural networks and offering lower runtime complexity than conventional solvers. While L2O has been applied to various problems, a crucial yet challenging class of problems -- robust combinatorial optimization in the form of minimax optimization -- have largely remained under-explored. In addition to the exponentially large decision space, a key challenge for robust combinatorial optimization lies in the inner optimization problem, which is typically non-convex and entangled with outer optimization. In this paper, we study robust combinatorial optimization and propose a novel learning-based optimizer, called LRCO (Learning for Robust Combinatorial Optimization), which quickly outputs a robust solution in the presence of uncertain context. LRCO leverages a pair of learning-based optimizers -- one for the minimizer and the other for the maximizer -- that use their respective objective functions as losses and can be trained without the need of labels for training problem instances. To evaluate the performance of LRCO, we perform simulations for the task offloading problem in vehicular edge computing. Our results highlight that LRCO can greatly reduce the worst-case cost and improve robustness, while having a very low runtime complexity.


翻译:学习优化(L2O)最近成为解决优化问题的有希望的方法,它利用神经网络的强大预测力,提供了比传统解决方案更低的运行时间复杂性。虽然L2O被应用于各种问题,但一个关键而富有挑战性的问题 -- -- 以微模轴优化的形式进行强力组合优化 -- -- 在很大程度上仍然未得到充分探讨。除了极大的决策空间外,强力组合优化的一个关键挑战在于内部优化问题,它通常是非连接的,与外部优化纠缠在一起。在本文中,我们研究强大的组合优化,并提出一个新的基于学习的优化工具,称为LLROCO(学习机器人组合组合优化),在不确定的情况下迅速产生强有力的解决方案。LOC利用一对以学习为基础的优化的组合优化工具 -- -- 一个用于最小化器,另一个用于最大化 -- -- 将各自的客观功能用作损失,并且无需标签来培训问题实例。为了评价LRCO的性能,我们进行最差的模拟,同时进行最强的模拟,以降低我们高压的成本计算。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
专知会员服务
115+阅读 · 2019年12月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
7+阅读 · 2018年5月23日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
专知会员服务
115+阅读 · 2019年12月24日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员