Urban traffic speed prediction aims to estimate the future traffic speed for improving the urban transportation services. Enormous efforts have been made on exploiting spatial correlations and temporal dependencies of traffic speed evolving patterns by leveraging explicit spatial relations (geographical proximity) through pre-defined geographical structures ({\it e.g.}, region grids or road networks). While achieving promising results, current traffic speed prediction methods still suffer from ignoring implicit spatial correlations (interactions), which cannot be captured by grid/graph convolutions. To tackle the challenge, we propose a generic model for enabling the current traffic speed prediction methods to preserve implicit spatial correlations. Specifically, we first develop a Dual-Transformer architecture, including a Spatial Transformer and a Temporal Transformer. The Spatial Transformer automatically learns the implicit spatial correlations across the road segments beyond the boundary of geographical structures, while the Temporal Transformer aims to capture the dynamic changing patterns of the implicit spatial correlations. Then, to further integrate both explicit and implicit spatial correlations, we propose a distillation-style learning framework, in which the existing traffic speed prediction methods are considered as the teacher model, and the proposed Dual-Transformer architectures are considered as the student model. The extensive experiments over three real-world datasets indicate significant improvements of our proposed framework over the existing methods.
翻译:城市交通速度预测旨在估计未来交通速度,以改善城市交通服务。我们作出了巨大努力,通过预先确定的地理结构(例如:),利用明确的空间关系(地理距离),利用明确的空间关系(地理距离),利用明确的空间关系(地理距离)来利用交通速度变化模式的空间相关性和时间依赖。虽然取得了有希望的成果,但目前的交通速度预测方法仍然受到忽视隐性空间相关性(互动)的困扰,而这种隐性空间关联无法被电网/地图连接所捕捉。为了应对这一挑战,我们提出了一个通用模型,使目前的交通速度预测方法能够保持隐性空间相关性。具体地说,我们首先开发了一个双轨结构,包括空间变换器和时空变换器。空间变换器自动了解地理结构边界以外的公路段之间的隐性空间相关性,而温度变换器的目的是捕捉隐性空间关联的动态变化模式(互动),而这些隐性空间相关性无法被电磁性关系进一步整合。为了应对这一挑战,我们提议了一个蒸馏式学习框架,在其中将现有的交通速度预测方法视为真正的教师模型,而拟议的双向式模型则表明我们的拟议中的重大结构。