Deep neural networks (DNNs) are sensitive to adversarial examples, resulting in fragile and unreliable performance in the real world. Although adversarial training (AT) is currently one of the most effective methodologies to robustify DNNs, it is computationally very expensive (e.g., 5-10X costlier than standard training). To address this challenge, existing approaches focus on single-step AT, referred to as Fast AT, reducing the overhead of adversarial example generation. Unfortunately, these approaches are known to fail against stronger adversaries. To make AT computationally efficient without compromising robustness, this paper takes a different view of the efficient AT problem. Specifically, we propose to minimize redundancies at the data level by leveraging data pruning. Extensive experiments demonstrate that the data pruning based AT can achieve similar or superior robust (and clean) accuracy as its unpruned counterparts while being significantly faster. For instance, proposed strategies accelerate CIFAR-10 training up to 3.44X and CIFAR-100 training to 2.02X. Additionally, the data pruning methods can readily be reconciled with existing adversarial acceleration tricks to obtain the striking speed-ups of 5.66X and 5.12X on CIFAR-10, 3.67X and 3.07X on CIFAR-100 with TRADES and MART, respectively.


翻译:深心神经网络(DNNS)对对抗性实例十分敏感,在现实世界中造成脆弱和不可靠的业绩。虽然对抗性培训(AT)目前是巩固DNS的最有效方法之一,但它在计算上非常昂贵(例如,5-10x比标准培训更昂贵)。为了应对这一挑战,现有方法侧重于单步的ATT,称为快速AT,减少对抗性实例生成的间接负担。不幸的是,这些方法已知对较强的对手而言是失败的。为了使AT在计算上效率高而不损害强力,本文对有效的AT问题持不同的看法。具体地说,我们提议通过利用数据运行最大限度地减少数据上的冗余。广泛的实验表明,基于AT的数据运行能够实现类似或超强(和清洁)的准确性,因为其未运行的对等,同时大大加快速度。例如,拟议的战略将CIFAR-10培训加速到3.44X,使CIFAR-100培训达到2.02.X。此外,数据运行方法可以随时与现有的对抗性加速性加速技术加速技术加速技术系统3.66和5X的冲击式RA-10。和5X的CIARA-10。</s>

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
38+阅读 · 2020年3月10日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员