Deep learning based on unrolled algorithm has served as an effective method for accelerated magnetic resonance imaging (MRI). However, many methods ignore the direct use of edge information to assist MRI reconstruction. In this work, we present the edge-weighted pFISTA-Net that directly applies the detected edge map to the soft-thresholding part of pFISTA-Net. The soft-thresholding value of different regions will be adjusted according to the edge map. Experimental results of a public brain dataset show that the proposed yields reconstructions with lower error and better artifact suppression compared with the state-of-the-art deep learning-based methods. The edge-weighted pFISTA-Net also shows robustness for different undersampling masks and edge detection operators. In addition, we extend the edge weighted structure to joint reconstruction and segmentation network and obtain improved reconstruction performance and more accurate segmentation results.
翻译:基于未滚动算法的深度学习是加速磁共振成像(MRI)的有效方法。 但是,许多方法忽略了直接使用边缘信息来帮助磁共振重建。 在这项工作中,我们展示了将检测到的边缘图直接应用于 PFISTA-Net 的软持有部分的边缘网。 不同区域的软持有值将根据边缘图进行调整。 公共大脑数据集的实验结果显示,与最先进的深层学习方法相比,拟议中的重塑成果的误差较小,工艺品抑制效果更好。 边加权 PFISTA- Net还显示了不同低采样面罩和边缘探测操作器的稳健性。 此外,我们将边缘加权结构扩大到联合的重建和分化网络,并获得更好的重建绩效和更准确的分化结果。