In vivo cardiac diffusion tensor imaging (cDTI) is a promising Magnetic Resonance Imaging (MRI) technique for evaluating the micro-structure of myocardial tissue in the living heart, providing insights into cardiac function and enabling the development of innovative therapeutic strategies. However, the integration of cDTI into routine clinical practice is challenging due to the technical obstacles involved in the acquisition, such as low signal-to-noise ratio and long scanning times. In this paper, we investigate and implement three different types of deep learning-based MRI reconstruction models for cDTI reconstruction. We evaluate the performance of these models based on reconstruction quality assessment and diffusion tensor parameter assessment. Our results indicate that the models we discussed in this study can be applied for clinical use at an acceleration factor (AF) of $\times 2$ and $\times 4$, with the D5C5 model showing superior fidelity for reconstruction and the SwinMR model providing higher perceptual scores. There is no statistical difference with the reference for all diffusion tensor parameters at AF $\times 2$ or most DT parameters at AF $\times 4$, and the quality of most diffusion tensor parameter maps are visually acceptable. SwinMR is recommended as the optimal approach for reconstruction at AF $\times 2$ and AF $\times 4$. However, we believed the models discussed in this studies are not prepared for clinical use at a higher AF. At AF $\times 8$, the performance of all models discussed remains limited, with only half of the diffusion tensor parameters being recovered to a level with no statistical difference from the reference. Some diffusion tensor parameter maps even provide wrong and misleading information.


翻译:摘要:体内心脏扩散张量成像(cDTI)是一种有前途的磁共振成像(MRI)技术,用于评估活体心脏心肌组织的微观结构,为心脏功能提供见解并开发创新的治疗策略。然而,将cDTI整合到日常临床实践中存在技术障碍,例如低信噪比和长扫描时间。在本文中,我们研究和实现了三种不同类型的基于深度学习的MRI重建模型用于cDTI重建。我们基于重建质量评估和扩散张量参数评估评估了这些模型的性能。我们的结果表明,我们在本研究中讨论的模型可以在加速因子(AF)为$\times 2$和$\times 4$时用于临床应用,D5C5模型在重建保真度方面表现优异,SwinMR模型提供更高的感知评分。对于AF $\times 2$或AF $\times 4$下的所有扩散张量参数,没有统计差异,大多数扩散张量参数图的质量也具有视觉上可接受性。建议使用SwinMR作为AF $\times 2$和AF $\times 4$时的重建最优方法。然而,我们认为在更高的加速因子下,本研究中讨论的模型还没有为临床使用做好准备。在AF $\times 8$下,所有讨论的模型的性能仍然有限,只有一半的扩散张量参数恢复到没有统计差异与参考值。一些扩散张量参数图甚至提供错误和误导性信息。

1
下载
关闭预览

相关内容

深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.9 新增功能
TensorFlow
7+阅读 · 2022年6月23日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2023年5月20日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
44+阅读 · 2022年9月6日
Arxiv
14+阅读 · 2021年8月5日
VIP会员
相关VIP内容
深度学习激活函数全面综述论文
专知会员服务
70+阅读 · 2021年10月1日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
TensorFlow 2.9 新增功能
TensorFlow
7+阅读 · 2022年6月23日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员