Deep unfolding networks (DUNs) are the foremost methods in the realm of compressed sensing MRI, as they can employ learnable networks to facilitate interpretable forward-inference operators. However, several daunting issues still exist, including the heavy dependency on the first-order optimization algorithms, the insufficient information fusion mechanisms, and the limitation of capturing long-range relationships. To address the issues, we propose a Generically Accelerated Half-Quadratic Splitting (GA-HQS) algorithm that incorporates second-order gradient information and pyramid attention modules for the delicate fusion of inputs at the pixel level. Moreover, a multi-scale split transformer is also designed to enhance the global feature representation. Comprehensive experiments demonstrate that our method surpasses previous ones on single-coil MRI acceleration tasks.
翻译:深度展开网络是压缩感知MRI领域中最重要的方法之一,因为它们可以利用可学习的网络来促进可解释的前向推理操作。然而,仍存在许多令人望而生畏的问题,包括对一阶优化算法的重度依赖,不充分的信息融合机制以及无法捕捉长距离关系的限制。为了解决这些问题,我们提出了一种泛加速半二次分裂算法 (GA-HQS),它融合了二阶梯度信息和金字塔注意力模块,以便在像素级别上精细融合输入。此外,还设计了一种多尺度分裂转换器以增强全局特征表示。全面实验显示,我们的方法在单线圈MRI加速任务上超越了之前的方法。