Industrial anomaly detection (IAD) is crucial for automating industrial quality inspection. The diversity of the datasets is the foundation for developing comprehensive IAD algorithms. Existing IAD datasets focus on the diversity of data categories, overlooking the diversity of domains within the same data category. In this paper, to bridge this gap, we propose the Aero-engine Blade Anomaly Detection (AeBAD) dataset, consisting of two sub-datasets: the single-blade dataset and the video anomaly detection dataset of blades. Compared to existing datasets, AeBAD has the following two characteristics: 1.) The target samples are not aligned and at different scales. 2.) There is a domain shift between the distribution of normal samples in the test set and the training set, where the domain shifts are mainly caused by the changes in illumination and view. Based on this dataset, we observe that current state-of-the-art (SOTA) IAD methods exhibit limitations when the domain of normal samples in the test set undergoes a shift. To address this issue, we propose a novel method called masked multi-scale reconstruction (MMR), which enhances the model's capacity to deduce causality among patches in normal samples by a masked reconstruction task. MMR achieves superior performance compared to SOTA methods on the AeBAD dataset. Furthermore, MMR achieves competitive performance with SOTA methods to detect the anomalies of different types on the MVTec AD dataset. Code and dataset are available at https://github.com/zhangzilongc/MMR.
翻译:工业异常检测(IAD)对于自动化工业质量检查至关重要。数据集的多样性是开发全面IAD算法的基础。现有的IAD数据集关注数据类别的多样性,而忽略了同一数据类别中不同领域的多样性。为了弥补这一差距,本文提出了飞机发动机叶片异常检测(AeBAD)数据集,包括单叶片数据集和叶片视频异常检测数据集。与现有数据集相比,AeBAD具有以下两个特点:1)目标样本未对齐且处于不同尺度。2)测试集中正常样本的分布与训练集中不同,其中域漂移主要由于光照和视图的变化引起。基于该数据集,我们发现当前领先的IAD方法在测试集中正常样本的领域发生移位时存在局限性。为了解决这个问题,我们提出了一种称为遮蔽多尺度重构(MMR)的新方法,通过遮蔽重构任务增强模型推断正常样本补丁之间因果关系的能力。 MMR在AeBAD数据集上表现出优异的性能,比SOTA方法优越。此外,MMR在MVTec AD数据集上检测不同类型异常方面表现出优秀的性能。 代码和数据集可在https://github.com/zhangzilongc/MMR上获得。