The success of deep reinforcement learning (DRL) lies in its ability to learn a representation that is well-suited for the exploration and exploitation task. To understand how the choice of representation can improve the efficiency of reinforcement learning (RL), we study representation selection for a class of low-rank Markov Decision Processes (MDPs) where the transition kernel can be represented in a bilinear form. We propose an efficient algorithm, called ReLEX, for representation learning in both online and offline RL. Specifically, we show that the online version of ReLEX, called ReLEX-UCB, always performs no worse than the state-of-the-art algorithm without representation selection, and achieves a strictly better constant regret if the representation function class has a "coverage" property over the entire state-action space. For the offline counterpart, ReLEX-LCB, we show that the algorithm can find the optimal policy if the representation class can cover the state-action space and achieves gap-dependent sample complexity. This is the first result with constant sample complexity for representation learning in offline RL.
翻译:暂无翻译