In the evolving field of machine learning, ensuring fairness has become a critical concern, prompting the development of algorithms designed to mitigate discriminatory outcomes in decision-making processes. However, achieving fairness in the presence of group-specific concept drift remains an unexplored frontier, and our research represents pioneering efforts in this regard. Group-specific concept drift refers to situations where one group experiences concept drift over time while another does not, leading to a decrease in fairness even if accuracy remains fairly stable. Within the framework of federated learning, where clients collaboratively train models, its distributed nature further amplifies these challenges since each client can experience group-specific concept drift independently while still sharing the same underlying concept, creating a complex and dynamic environment for maintaining fairness. One of the significant contributions of our research is the formalization and introduction of the problem of group-specific concept drift and its distributed counterpart, shedding light on its critical importance in the realm of fairness. In addition, leveraging insights from prior research, we adapt an existing distributed concept drift adaptation algorithm to tackle group-specific distributed concept drift which utilizes a multi-model approach, a local group-specific drift detection mechanism, and continuous clustering of models over time. The findings from our experiments highlight the importance of addressing group-specific concept drift and its distributed counterpart to advance fairness in machine learning.
翻译:暂无翻译