Physics-informed neural network (PINN) has been successfully applied in solving a variety of nonlinear non-convex forward and inverse problems. However, the training is challenging because of the non-convex loss functions and the multiple optima in the Bayesian inverse problem. In this work, we propose a multi-variance replica exchange stochastic gradient Langevin diffusion method to tackle the challenge of the multiple local optima in the optimization and the challenge of the multiple modal posterior distribution in the inverse problem. Replica exchange methods are capable of escaping from the local traps and accelerating the convergence. However, it may not be efficient to solve mathematical inversion problems by using the vanilla replica method directly since the method doubles the computational cost in evaluating the forward solvers (likelihood functions) in the two chains. To address this issue, we propose to make different assumptions on the energy function estimation and this facilities one to use solvers of different fidelities in the likelihood function evaluation. We give an unbiased estimate of the swapping rate and give an estimation of the discretization error of the scheme. To verify our idea, we design and solve four inverse problems which have multiple modes. The proposed method is also employed to train the Bayesian PINN to solve the forward and inverse problems; faster and more accurate convergence has been observed when compared to the stochastic gradient Langevin diffusion (SGLD) method and vanila replica exchange methods.


翻译:物理知情神经网络(PINN)已被成功应用于解决各种非线性非隐形的前向和反向问题,然而,培训具有挑战性,因为巴伊西亚反问题中的非康韦克斯损失功能和多重opima问题。在这项工作中,我们建议采用多变量复制交换交换的随机梯度梯度Langevin扩散方法,以应对在优化和反问题中多种模式外表分布的挑战。复制交换方法能够摆脱本地陷阱,加快趋同速度。然而,由于使用香草复制法直接将两个链中前方解决方案(类似功能)的计算成本增加一倍,解决数学反常问题可能不是有效的。为了解决这一问题,我们提议对能源功能估算和这一设施作不同的假设,在对可能性函数评估中使用不同忠实的解析器。我们对汇率作出公正的估计,对离异的周期错误作出估计。但是,由于使用香草复制法的复制法将计算成本增加一倍的计算方法加倍,因此可能无法有效解决数学反常态的折叠问题。我们用的方法是先变的汇率,而先变的汇率方法,在前向前向前方解决。

0
下载
关闭预览

相关内容

【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
10+阅读 · 2021年2月18日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
5+阅读 · 2018年5月1日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
【斯坦福大学】Gradient Surgery for Multi-Task Learning
专知会员服务
46+阅读 · 2020年1月23日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员