The Morse-Smale complex is a well studied topological structure that represents the gradient flow behavior between critical points of a scalar function. It supports multi-scale topological analysis and visualization of feature-rich scientific data. Several parallel algorithms have been proposed towards the fast computation of the 3D Morse-Smale complex. Its computation continues to pose significant algorithmic challenges. In particular, the non-trivial structure of the connections between the saddle critical points are not amenable to parallel computation. This paper describes a fine grained parallel algorithm for computing the Morse-Smale complex and a GPU implementation gMSC. The algorithm first determines the saddle-saddle reachability via a transformation into a sequence of vector operations, and next computes the paths between saddles by transforming it into a sequence of matrix operations. Computational experiments show that the method achieves up to 8.6x speedup over pyms3d and 6x speedup over TTK, the current shared memory implementations. The paper also presents a comprehensive experimental analysis of different steps of the algorithm and reports on their contribution towards runtime performance. Finally, it introduces a CPU based data parallel algorithm for simplifying the Morse-Smale complex via iterative critical point pair cancellation.
翻译:Morse- Smal 综合体是一个研究周密的表层结构,它代表了标度函数各关键点之间的梯度流动行为。 它支持多尺度的表层分析和地貌丰富科学数据的可视化。 为快速计算 3D Morse- Smal 综合体提出了几个平行算法。 它的计算继续带来重大的算法挑战。 特别是, 马鞍关键点之间连接的非三角结构不适于平行计算。 本文描述了计算摩尔斯- Smal 综合体和 GPU 执行 GMSC 的细粒子平行算法。 算法首先通过转换成矢量操作序列来决定坐垫可达性。 下一个算法通过将马鞍转换成矩阵操作序列来计算马鞍之间的路径。 计算实验显示, 该方法达到马鞍3d 和 6x 速度, 无法同时进行计算。 本文还介绍了计算算法的不同步骤的全面实验分析, 并报告了其运行运行性表现的报告 。 最后, 将基于 CPOL 的复杂数据算法, 简化了基于 CPOL 的同步取消。