Online camera-to-ground calibration is to generate a non-rigid body transformation between the camera and the road surface in a real-time manner. Existing solutions utilize static calibration, suffering from environmental variations such as tire pressure changes, vehicle loading volume variations, and road surface diversity. Other online solutions exploit the usage of road elements or photometric consistency between overlapping views across images, which require continuous detection of specific targets on the road or assistance with multiple cameras to facilitate calibration. In our work, we propose an online monocular camera-to-ground calibration solution that does not utilize any specific targets while driving. We perform a coarse-to-fine approach for ground feature extraction through wheel odometry and estimate the camera-to-ground calibration parameters through a sliding-window-based factor graph optimization. Considering the non-rigid transformation of camera-to-ground while driving, we provide metrics to quantify calibration performance and stopping criteria to report/broadcast our satisfying calibration results. Extensive experiments using real-world data demonstrate that our algorithm is effective and outperforms state-of-the-art techniques.
翻译:在线摄像头到地面校准是即时生成摄像头和道路表面之间的非刚性体变换。现有的解决方案利用静态校准,受到轮胎压力的变化、车载体积的变化和道路表面的多样性等环境变化的影响。其他在线解决方案利用道路元素或图像之间的光度一致性进行校准,在图像之间的重叠视图中要求不断检测特定的路标。在我们的工作中,我们提出了一种不使用任何具体目标进行在线单目摄像头到地面校准的解决方案。我们通过轮胎测距对地面特征提取进行粗到细的处理,并通过基于滑动窗口的因子图优化估计摄像头到地面的校准参数。考虑在驾驶过程中的摄像头到地面的非刚性变换,我们提供了度量校准性能的指标和停止标准,以报告/广播我们的满意的校准结果。使用实际数据进行的大量实验证明,我们的算法是有效的,并且优于现有技术。