We introduce a new method based on nonnegative matrix factorization, Neural NMF, for detecting latent hierarchical structure in data. Datasets with hierarchical structure arise in a wide variety of fields, such as document classification, image processing, and bioinformatics. Neural NMF recursively applies NMF in layers to discover overarching topics encompassing the lower-level features. We derive a backpropagation optimization scheme that allows us to frame hierarchical NMF as a neural network. We test Neural NMF on a synthetic hierarchical dataset, the 20 Newsgroups dataset, and the MyLymeData symptoms dataset. Numerical results demonstrate that Neural NMF outperforms other hierarchical NMF methods on these data sets and offers better learned hierarchical structure and interpretability of topics.
翻译:我们引入了一种基于非负矩阵因子化的新方法,即神经NMF,以探测数据中的潜伏等级结构。在文件分类、图像处理和生物信息学等广泛领域出现了带有等级结构的数据集。神经NMF循环地在层次上应用NMF来发现包含较低层次特征的总括性专题。我们产生了一个背面性调整优化计划,使我们能够将等级NMF作为一个神经网络来设置。我们在合成等级数据集、20个新闻组数据集和MyLymeData症状数据集上测试神经NMF。数字结果显示,神经NMF在这些数据组上优于其他等级NMF方法,提供了更好的学习等级结构和专题的解释性。</s>