LP-duality theory has played a central role in the study of the core, right from its early days to the present time. However, despite the extensive nature of this work, basic gaps still remain. We address these gaps using the following building blocks from LP-duality theory: 1. Total unimodularity (TUM). 2. Complementary slackness conditions and strict complementarity. Our exploration of TUM leads to defining new games, characterizing their cores and giving novel ways of using core imputations to enforce constraints that arise naturally in applications of these games. The latter include: 1. Efficient algorithms for finding min-max fair, max-min fair and equitable core imputations. 2. Encouraging diversity and avoiding over-representation in a generalization of the assignment game. Complementarity enables us to prove new properties of core imputations of the assignment game and its generalizations.
翻译:LP-质量理论在核心研究中发挥了中心作用,从早期到现在,尽管这项工作具有广泛性质,但基本差距仍然存在。我们利用LP-质量理论的以下组成部分来弥补这些差距:1. 完全单一性(TUM)。2. 补充性松懈条件和严格的互补性。我们对TUM的探索导致定义新的游戏,确定核心核心特征,并提供新的方法,利用核心估算来实施这些游戏应用中自然产生的限制。后者包括:1. 找到微量最大公平、最大公平和公平的核心估算的有效算法。2. 鼓励多样性,避免在任务游戏的一般化中出现过多的代表性。互补使我们能够证明任务游戏及其一般化的核心估算的新性质。</s>