The lack of any sender authentication mechanism in place makes CAN (Controller Area Network) vulnerable to security threats. For instance, an attacker can impersonate an ECU (Electronic Control Unit) on the bus and send spoofed messages unobtrusively with the identifier of the impersonated ECU. To address the insecure nature of the system, this thesis demonstrates a sender authentication technique that uses power consumption measurements of the electronic control units (ECUs) and a classification model to determine the transmitting states of the ECUs. The method's evaluation in real-world settings shows that the technique applies in a broad range of operating conditions and achieves good accuracy. A key challenge of machine learning-based security controls is the potential of false positives. A false-positive alert may induce panic in operators, lead to incorrect reactions, and in the long run cause alarm fatigue. For reliable decision-making in such a circumstance, knowing the cause for unusual model behavior is essential. But, the black-box nature of these models makes them uninterpretable. Therefore, another contribution of this thesis explores explanation techniques for inputs of type image and time series that (1) assign weights to individual inputs based on their sensitivity toward the target class, (2) and quantify the variations in the explanation by reconstructing the sensitive regions of the inputs using a generative model. In summary, this thesis (https://uwspace.uwaterloo.ca/handle/10012/18134) presents methods for addressing the security and interpretability in automotive systems, which can also be applied in other settings where safe, transparent, and reliable decision-making is crucial.
翻译:例如,攻击者可以在公共汽车上冒充电子控制股(ECU),并以假正数作为主要挑战。为解决该系统的不安全性质,该论文展示了使用电子控制单位(ECUs)动力消费测量和分类模型来确定电子控制单位(ECUs)传输状态的发送认证技术。该方法在现实世界环境中的评估表明,该技术适用于广泛的操作条件,并实现了良好的准确性。机器学习安全控制的主要挑战就是假正数的可能性。假正数警报可能会引起操作者的恐慌,导致不正确的反应,长期引发警报疲劳。在这种情况下,可靠的决策必须了解电子控制单位(ECUs)的动力消费测量和分类模型行为的原因。但是,这些模型的黑箱性质使得它们无法互换。因此,该方法的另一个贡献是,对类型图像和时间序列的投入进行解释,而基于机器学习的安全控制的主要挑战则是假正数。 虚假的警报可能会在操作者中引起恐慌,导致不正确的反应,从长期来说,引起警报疲劳。对于在这种情况下,可靠的决策,了解异常模式行为的原因至关重要。但是,这些模型的性质使得它们无法相互解释。 因此,在模型/时间序列中,在分析中,在分析中可以对单个输入进行精确的变变变。