Partial information decompositions (PIDs), which quantify information interactions between three or more variables in terms of uniqueness, redundancy and synergy, are gaining traction in many application domains. However, our understanding of the operational interpretations of PIDs is still incomplete for many popular PID definitions. In this paper, we discuss the operational interpretations of unique information through the lens of two well-known PID definitions. We reexamine an interpretation from statistical decision theory showing how unique information upper bounds the risk in a decision problem. We then explore a new connection between the two PIDs, which allows us to develop an informal but appealing interpretation, and generalize the PID definitions using a common Lagrangian formulation. Finally, we provide a new PID definition that is able to capture the information that is unique. We also show that it has a straightforward interpretation and examine its properties.
翻译:部分信息分解(PIDs)将三个或三个以上变量在独特性、冗余性和协同性方面的信息相互作用量化,在许多应用领域,这种分解正在获得牵引力。然而,我们对PIDs业务解释的理解对于许多广受欢迎的PID定义来说仍然不完全。在本文中,我们通过两个众所周知的PID定义的透镜讨论对独特信息的实际解释。我们重新审查了统计决定理论的解释,该解释表明在决策问题中独特的信息有多高的界限。然后,我们探讨了两个PIDs之间的新联系,使我们能够发展一种非正式但有吸引力的解释,并用一种通用的Lagrangian公式概括PID的定义。最后,我们提供了一个新的PID定义,能够捕捉到独特的信息。我们还表明,它有一个直截的诠释,并检查其特性。