Background: Driving automation systems (DAS), including autonomous driving and advanced driver assistance, are an important safety-critical domain. DAS often incorporate perceptions systems that use machine learning (ML) to analyze the vehicle environment. Aims: We explore new or differing requirements engineering (RE) topics and challenges that practitioners experience in this domain. Method: We have conducted an interview study with 19 participants across five companies and performed thematic analysis. Results: Practitioners have difficulty specifying upfront requirements, and often rely on scenarios and operational design domains (ODDs) as RE artifacts. Challenges relate to ODD detection and ODD exit detection, realistic scenarios, edge case specification, breaking down requirements, traceability, creating specifications for data and annotations, and quantifying quality requirements. Conclusions: Our findings contribute to understanding how RE is practiced for DAS perception systems and the collected challenges can drive future research for DAS and other ML-enabled systems.
翻译:背景:驾驶自动化系统(DAS),包括自主驾驶和高级驾驶员协助,是一个重要的安全关键领域。DAS通常包含使用机器学习(ML)分析车辆环境的认知系统。目标:我们探索了新的或不同的要求工程(RE)专题和从业人员在这一领域所经历的挑战。方法:我们与5家公司的19名参与者进行了访谈研究,并进行了专题分析。结果:从业者难以具体确定前期要求,并经常依赖情景和操作设计领域作为RE的文物。挑战涉及ODD和ODD退出探测、现实情景、边框规格、打破要求、可追溯性、为数据和说明制定规格以及量化质量要求。结论:我们的调查结果有助于了解DAS认知系统如何实践RE,所收集的挑战能够推动DAS和其他由ML驱动的系统的未来研究。