Automated audits of recommender systems found that blindly following recommendations leads users to increasingly partisan, conspiratorial, or false content. At the same time, studies using real user traces suggest that recommender systems are not the primary driver of attention toward extreme content; on the contrary, such content is mostly reached through other means, e.g., other websites. In this paper, we explain the following apparent paradox: if the recommendation algorithm favors extreme content, why is it not driving its consumption? With a simple agent-based model where users attribute different utilities to items in the recommender system, we show that the collaborative-filtering nature of recommender systems and the nicheness of extreme content can resolve the apparent paradox: although blindly following recommendations would indeed lead users to niche content, users rarely consume niche content when given the option because it is of low utility to them, which can lead the recommender system to deamplify such content. Our results call for a nuanced interpretation of ``algorithmic amplification'' and highlight the importance of modeling the utility of content to users when auditing recommender systems.
翻译:对推荐人的系统进行自动化审计发现,盲目地遵循建议会导致用户越来越偏向、串通或虚假的内容。 同时,使用真实用户痕迹的研究表明,推荐人系统并不是引起关注极端内容的主要驱动因素;相反,这种内容大多是通过其他手段,例如其他网站,达到的。在本文中,我们解释了以下明显的矛盾:如果建议算法偏向极端内容,为什么它不驱动其消费?一个简单的代理模型,用户将不同的公用事业归属于推荐人系统中的项目,我们展示了推荐人系统的协作过滤性质和极端内容的定位性能够解决这一明显的矛盾:虽然盲目地采纳建议确实会导致用户获取特定内容,但用户在给予选择时却很少使用特定内容,因为对于他们来说,这种选择很少有用,因此能够引导推荐人系统去标注这类内容。我们的结果要求用微调解释“微调精度调整”系统,并强调了在审计推荐人系统时将内容对用户的实用性进行建模的重要性。