Automotive user interface (AUI) evaluation becomes increasingly complex due to novel interaction modalities, driving automation, heterogeneous data, and dynamic environmental contexts. Immersive analytics may enable efficient explorations of the resulting multilayered interplay between humans, vehicles, and the environment. However, no such tool exists for the automotive domain. With AutoVis, we address this gap by combining a non-immersive desktop with a virtual reality view enabling mixed-immersive analysis of AUIs. We identify design requirements based on an analysis of AUI research and domain expert interviews (N=5). AutoVis supports analyzing passenger behavior, physiology, spatial interaction, and events in a replicated study environment using avatars, trajectories, and heatmaps. We apply context portals and driving-path events as automotive-specific visualizations. To validate AutoVis against real-world analysis tasks, we implemented a prototype, conducted heuristic walkthroughs using authentic data from a case study and public datasets, and leveraged a real vehicle in the analysis process.
翻译:汽车用户界面(AUI)评价由于新的互动模式、驱动自动化、多种数据和动态环境环境而变得日益复杂。光学分析可能有助于对由此产生的人、车辆和环境之间的多层次相互作用进行有效探索。然而,汽车域没有这种工具。AutoVis,我们通过将非隐性桌面与虚拟现实视图相结合,对AUIs进行混合式分析来解决这一差距。我们根据对AUI研究和域专家访谈的分析(N=5),确定设计要求。AUI研究和域专家访谈的分析(N=5),“自动观察”支持对乘客行为、生理学、空间互动和事件进行分析,在利用阿凡达、轨图和热图进行复制的研究环境中进行分析。我们使用环境门户和驱动器作为汽车特定视觉化。为了验证Autovic相对于现实世界分析任务,我们采用了一个原型,利用案例研究和公共数据集的可靠数据进行超光滑行,并在分析过程中利用一个真实的车辆。