Digital terrain models of geological information occasionally require smooth data in domains with complex irregular boundaries due to its data distribution. Traditional thin plate splines produce visually pleasing surfaces, but they are too computationally expensive for data of large sizes. Finite element thin plate spline smoother (TPSFEM) is an alternative that uses first-order finite elements to efficiently interpolate and smooth large data sets. Previous studies focused on regular square domains, which are insufficient for real-world applications. This article builds on prior work and investigates the performance of the TPSFEM and adaptive mesh refinement for real-world data sets in irregular domains. The Dirichlet boundaries are approximated using the thin plate spline and data-dependent weights are applied to prevent over-refinement near boundaries. Three geological surveys (aerial, terrestrial and bathymetric) with distinct data distribution patterns were tested in the numerical experiments. We found that irregular domains with adaptive mesh refinement significantly improve the efficiency of the interpolation. While the inconsistency in approximated boundary conditions, we may prevent it using additional constraints like weights. This finding is also applicable to other finite element-based smoothers.


翻译:地质信息的数字地形模型有时需要在其数据分布的复杂非常规边界范围内的平滑数据。传统的薄板板样条产生视觉上令人愉快的表面,但对于大尺寸的数据来说,这些薄板样条在计算上过于昂贵。薄板样条滑滑滑(TPSFEM)是一种选择,它使用一阶的有限元素来高效地互插和平滑大型数据集。以前的研究侧重于正常的平方域,这些区域不足以进行真实世界应用。本文章以先前的工作为基础,并调查TPSFEM的性能和对非常规域中真实世界数据集的适应性改进。使用薄板块样条和数据依赖的重量来估计底线边界的近似成本,以防止在边界附近过度划定。在数字实验中测试了三种具有不同数据分布模式的地质勘测(空中、陆地和水深测量),我们发现,有适应性细微改进的不正常区域大大提高了内推效率。虽然近似边界条件的不一致,但我们可以防止它使用诸如重量等额外的限制。这一结果也适用于其他基于定点的平滑动元素的平滑体。</s>

0
下载
关闭预览

相关内容

专知会员服务
39+阅读 · 2020年9月6日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
13+阅读 · 2021年3月29日
Adaptive Synthetic Characters for Military Training
Arxiv
46+阅读 · 2021年1月6日
Arxiv
14+阅读 · 2020年12月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员