A new notion of bent sequence related to Hadamard matrices was introduced recently, motivated by a security application ( Sol\'e et al, 2021). We study the self dual class in length at most $196.$ We use three competing methods of generation: Exhaustion, Linear Algebra and Groebner bases. Regular Hadamard matrices and Bush-type Hadamard matrices provide many examples. We conjecture that if $v$ is an even perfect square, a self-dual bent sequence of length $v$ always exist. We introduce the strong automorphism group of Hadamard matrices, which acts on their associated self-dual bent sequences. We give an efficient algorithm to compute that group.
翻译:最近,在安全应用程序(Sol\'e et al, 2021)的推动下,采用了与Hadamard 矩阵有关的新的弯曲顺序概念。我们研究了自我双重等级的长度,最多为196美元。我们使用三种相互竞争的生成方法:Exhaustion, Linear Algebra 和 Groebner 基地。普通的Hadamard 矩阵和布什式的Hadamard 矩阵提供了许多例子。我们推测,如果美元是一个甚至完美的平方,则始终存在一种自我双重的弯曲顺序。我们引入了强大的Hadamard 矩阵自制组,该组对与之相关的自态弯曲序列采取行动。我们给出了一个高效的算法来计算该组。