A common method for deriving non-parametric tests is to reformulate a parametric test in terms of sample ranks. Despite being distribution free (even in finite samples), the resulting tests often display remarkable asymptotic power properties, typically matching the efficiency of their parametric counterpart. Empirically, these favorable power properties have been shown to persist in non-asymptotic regimes as well, prompting the need for finite-sample characterizations of the corresponding rank-based statistics. Here, we provide such characterization for the family of weighted $p$-norms of rank spacings, which includes the classical tests of Mann-Whitney, Dixon, and various generalizations thereof. For $p=1$, we provide exact expressions for the involved distributions, while for $p>1$ we describe the associated moment sequences and derive an algorithm to recover the distributions of interest from these sequences in a fast and stable manner. We use this framework to develop a new family of non-parametric tests mirroring properties of generalized likelihood-ratios, prove new tail bounds for Dixon's and Greenwood's statistics, and prove a previously formulated conjecture regarding the global efficiency of rank-based tests against the $F$-test in the context of scale-families.


翻译:得出非参数测试的一个常见方法是重新确定抽样等级的参数测试。尽管这种测试是免费的,但结果的测试往往表现出显著的无症状功率特性,通常与对应参数的效能相当。有规律的是,这些有利的功率特性在非特征系统中也表现出来,因此有必要对相应的等级统计进行有限的抽样特征描述。在这里,我们为等级间距的加权值美元-温度(包括曼-威特尼、狄克逊的典型测试及其各种概括性测试)的组合提供了这种特征。对于美元=1美元,我们为所涉分布提供了精确的表达方式,而对于1美元,我们描述了相关的时间序列,并得出一种算法,以快速和稳定的方式从这些序列中恢复利息的分配。我们利用这个框架来发展一个新的非参数式测试组,反映普遍概率比值的特性,其中包括曼-威特尼、狄克逊的典型测试,以及其中的各种概括性特征。对于所涉分布分布的精确表达方式,而对于相关的时间序列则我们描述了相关的时间序列序列顺序,并得出一种算法,以便以快速和稳定的方式恢复这些序列中的利益分配。 我们利用这个框架来形成一个新的非参数测试比比比基值标准的比值值的比值的底值值值值值值的比值值值值值值值值值值值值值值的比值。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
50+阅读 · 2020年12月14日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员