Knowledge graphs (KGs) have increasingly become the backbone of many critical knowledge-centric applications. Most large-scale KGs used in practice are automatically constructed based on an ensemble of extraction techniques applied over diverse data sources. Therefore, it is important to establish the provenance of results for a query to determine how these were computed. Provenance is shown to be useful for assigning confidence scores to the results, for debugging the KG generation itself, and for providing answer explanations. In many such applications, certain queries are registered as standing queries since their answers are needed often. However, KGs keep continuously changing due to reasons such as changes in the source data, improvements to the extraction techniques, refinement/enrichment of information, and so on. This brings us to the issue of efficiently maintaining the provenance polynomials of complex graph pattern queries for dynamic and large KGs instead of having to recompute them from scratch each time the KG is updated. Addressing these issues, we present HUKA which uses provenance polynomials for tracking the derivation of query results over knowledge graphs by encoding the edges involved in generating the answer. More importantly, HUKA also maintains these provenance polynomials in the face of updates---insertions as well as deletions of facts---to the underlying KG. Experimental results over large real-world KGs such as YAGO and DBpedia with various benchmark SPARQL query workloads reveals that HUKA can be almost 50 times faster than existing systems for provenance computation on dynamic KGs.


翻译:知识图表(KGs)日益成为许多以知识为中心的关键应用的支柱。在实践上,大多数大型KGs都是根据对不同数据源应用的各种提取技术的统合性自动构建的。因此,重要的是要为查询确定结果的来源,以确定如何计算这些结果。 证明证明对于给结果分配信任分数、调试 KG 一代本身和提供答案解释非常有用。在许多这类应用中,某些查询被登记为长期查询,因为往往需要这些查询的答案。然而,由于源数据的变化、提取技术的改进、信息的精细化/丰富等原因,KGs 继续不断变化。这使我们需要高效率地维持动态和大型 KGs 的复杂图表查询的源代码,而不是每次更新KGG 时都要重新拼图。 解决这些问题时,我们用源代码聚合卡来追踪知识图表的衍生结果,因为KGG值的边端几乎是KLG值,因此KG值的直径可以将KG值的直径对KG值的直径进行实时更新。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Arxiv
102+阅读 · 2020年3月4日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
LibRec 精选:位置感知的长序列会话推荐
LibRec智能推荐
3+阅读 · 2019年5月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
Top
微信扫码咨询专知VIP会员