This paper presents a novel density estimation method for anomaly detection using density matrices (a powerful mathematical formalism from quantum mechanics) and Fourier features. The method can be seen as an efficient approximation of Kernel Density Estimation (KDE). A systematic comparison of the proposed method with eleven state-of-the-art anomaly detection methods on various data sets is presented, showing competitive performance on different benchmark data sets. The method is trained efficiently and it uses optimization to find the parameters of data embedding. The prediction phase complexity of the proposed algorithm is constant relative to the training data size, and it performs well in data sets with different anomaly rates. Its architecture allows vectorization and can be implemented on GPU/TPU hardware.
翻译:本文介绍了利用密度矩阵(量子力学的强大数学形式主义)和Fourier特征进行异常现象检测的一种新的密度估计方法。这种方法可被视为核心密度估计(KDE)的高效近似值。对各种数据集中的拟议方法与11种最先进的异常现象检测方法进行了系统比较,显示了不同基准数据集的竞争性性能。该方法经过高效培训,利用优化找到数据嵌入参数。与培训数据大小相比,拟议算法的预测阶段复杂性保持不变,在数据集中运行良好,异常率不同。该方法的结构允许病媒化,可以在GPU/TPU硬件上实施。