We introduce a deep learning model that can universally approximate regular conditional distributions (RCDs). The proposed model operates in three phases: first, it linearizes inputs from a given metric space $\mathcal{X}$ to $\mathbb{R}^d$ via a feature map, then a deep feedforward neural network processes these linearized features, and then the network's outputs are then transformed to the $1$-Wasserstein space $\mathcal{P}_1(\mathbb{R}^D)$ via a probabilistic extension of the attention mechanism of Bahdanau et al.\ (2014). Our model, called the \textit{probabilistic transformer (PT)}, can approximate any continuous function from $\mathbb{R}^d $ to $\mathcal{P}_1(\mathbb{R}^D)$ uniformly on compact sets, quantitatively. We identify two ways in which the PT avoids the curse of dimensionality when approximating $\mathcal{P}_1(\mathbb{R}^D)$-valued functions. The first strategy builds functions in $C(\mathbb{R}^d,\mathcal{P}_1(\mathbb{R}^D))$ which can be efficiently approximated by a PT, uniformly on any given compact subset of $\mathbb{R}^d$. In the second approach, given any function $f$ in $C(\mathbb{R}^d,\mathcal{P}_1(\mathbb{R}^D))$, we build compact subsets of $\mathbb{R}^d$ whereon $f$ can be efficiently approximated by a PT.
翻译:我们引入了一个可以普遍接近常规有条件分布(RCDs)的深层次学习模型 。 提议的模式运行三个阶段 : 首先, 它通过地貌地图将特定度空间的输入量 $\ mathcal{X} 美元 以线性地图向$\mathbb{R ⁇ d$ 美元倾斜, 然后一个深度向上神经网络处理这些线性特征, 然后网络的输出会被转换为$- Wasserstein 空间$\ mathcal{P{( mathbb{P} 美元通过Bahdanau 和 al.(2014)的注意机制的概率延伸 $($D$D$) 。 我们的模型叫做\ textit{ polballballyfbortic 变异性变异器 (P_\\\\\\\\\\ malxxx% blickr} 我们确定了两种方法, 当对 $\ mex blick_ral_r\\\\\ b mab) 函数可以建立一个基数。