We propose a new formulation of optimal motion planning (OMP) algorithm for robots operating in a hazardous environment, called adaptive Gaussian-process based stochastic trajectory optimization (AGP-STO). It first restarts the accelerated gradient descent with the reestimated Lipschitz constant (L-reAGD) to improve the computation efficiency, only requiring 1st-order momentum. However, it still cannot infer a global optimum of the nonconvex problem, informed by the prior information of Gaussian-process (GP) and obstacles. So it then integrates the adaptive stochastic trajectory optimization (ASTO) in the L-reestimation process to learn the GP-prior rewarded by the important samples via accelerated moving averaging (AMA). Moreover, we introduce the incremental optimal motion planning (iOMP) to upgrade AGP-STO to iAGP-STO. It interpolates the trajectory incrementally among the previously optimized waypoints to ensure time-continuous safety. Finally, we benchmark iAGP-STO against the numerical (CHOMP, TrajOpt, GPMP) and sampling (STOMP, RRT-Connect) methods and conduct the tuning experiment of key parameters to show how the integration of L-reAGD, ASTO, and iOMP elevates computation efficiency and reliability. Moreover, the implementation of iAGP- STO on LBR-iiwa, multi-AGV, and rethink-Baxter demonstrates its application in manipulation, collaboration, and assistance.
翻译:我们建议为在危险环境中运行的机器人制定一种最佳运动规划(OMP)算法,称为适应性高斯过程的轨迹优化(AGP-STO),首先以重新估计的利普施茨常数(L-REAGD)重新开始加速梯度下降,以提高计算效率,只需要一阶动力;然而,它仍然无法根据Gausian进程(GP)和障碍的先前信息,推断出全球最佳的非凝固问题。因此,它随后将适应性随机轨迹优化(ASTO)纳入L-再估测过程,以便通过加速平均移动(AMA)来学习重要样品给GP的奖励。 此外,我们引入了递增的最佳运动规划(iOMP),将AGP-STO提升为iGP-STTO。 它的轨迹在先前最优化的路径之间逐步地推导出轨道,以确保时间持续安全。 最后,我们将iGP-STO优化轨迹优化轨道优化优化轨道优化轨道优化轨道优化,将iMP-ASG-SLM-LM-LARCLLLLL的升级和SLALGMLLA的测试、S的精化方法展示其精化、S的精化、S的精化、S的精化和精化的精化的精化和精化的精化方法的精化的精制的精制的精化和精制的精制的精制的精化和精制的精制的精制的精制的精制的精化和精制的精化。