This paper presents a hybrid robot motion planner that generates long-horizon motion plans for robot navigation in environments with obstacles. We propose a hybrid planner, RRT* with segmented trajectory optimization (RRT*-sOpt), which combines the merits of sampling-based planning, optimization-based planning, and trajectory splitting to quickly plan for a collision-free and dynamically-feasible motion plan. When generating a plan, the RRT* layer quickly samples a semi-optimal path and sets it as an initial reference path. Then, the sOpt layer splits the reference path and performs optimization on each segment. It then splits the new trajectory again and repeats the process until the whole trajectory converges. We also propose to reduce the number of segments before convergence with the aim of further reducing computation time. Simulation results show that RRT*-sOpt benefits from the hybrid structure with trajectory splitting and performs robustly in various robot platforms and scenarios.
翻译:本文介绍一个混合机器人运动规划器,它为在有障碍的环境中的机器人导航生成长视距运动计划。我们提议了一个混合规划器,RRT*,配有分段轨道优化(RRT*-SOpt),它结合了基于取样的规划、基于优化的规划以及轨迹分割的优点,以便快速规划一个无碰撞和动态可行的运动计划。当生成一个计划时,RRT* 层会快速采样一个半最佳路径,并将其设置为初始参考路径。然后,顶层会分割参考路径,对每个段进行优化。然后,它会再次分割新的轨迹,重复这一过程,直到整个轨迹汇合为止。我们还提议减少段数,然后进一步缩短计算时间。模拟结果显示,RRT* 将混合结构带来好处,轨迹分割,并在各种机器人平台和假设中强有力地运行。