Traditional inverse rendering techniques are based on textured meshes, which naturally adapts to modern graphics pipelines, but costly differentiable multi-bounce Monte Carlo (MC) ray tracing poses challenges for modeling global illumination. Recently, neural fields has demonstrated impressive reconstruction quality but falls short in modeling indirect illumination. In this paper, we introduce a simple yet efficient inverse rendering framework that combines the strengths of both methods. Specifically, given pre-trained neural field representing the scene, we can obtain an initial estimate of the signed distance field (SDF) and create a Neural Radiance Cache (NRC), an enhancement over the traditional radiance cache used in real-time rendering. By using the former to initialize differentiable marching tetrahedrons (DMTet) and the latter to model indirect illumination, we can compute the global illumination via single-bounce differentiable MC ray tracing and jointly optimize the geometry, material, and light through back propagation. Experiments demonstrate that, compared to previous methods, our approach effectively prevents indirect illumination effects from being baked into materials, thus obtaining the high-quality reconstruction of triangle mesh, Physically-Based (PBR) materials, and High Dynamic Range (HDR) light probe.
翻译:暂无翻译