This article re-examines integrated sensing and communication (ISAC) systems operating in the near-field region of a large antenna array while exploiting a large bandwidth. We first reveal the fundamental characteristics of wideband sensing and communication (S&C) channels and highlight the key changes that occur during the transition from the far-field to the near-field region. Specifically, there are two fundamental changes in the near-field region: strong angular-delay correlation and element-specific Doppler frequencies. It is highlighted that the near-field effect can enable the wideband-like S&C functionalities in terms of signal multiplexing and range sensing due to the strong angular-delay correlation, thus allowing the trading of large antenna arrays for large bandwidths. Furthermore, it also introduces the wideband-unattainable functionalities in high mobility S&C scenarios by leveraging the element-specific Doppler frequencies. We then delineate certain paradigm shifts in thinking required to advance toward near-field wideband ISAC systems, with a particular emphasis on resource allocation, antenna array arrangement, and transceiver architecture. Lastly, some other promising directions are discussed.
翻译:暂无翻译