The variational discrete element method developed in [Marazzato et al, 2020] for dynamic elasto-plastic computations is adapted to compute the dynamic evolution of elastic Cosserat materials. In addition to cellwise displacement degrees of freedom (dofs), cellwise rotational dofs are added. A reconstruction is devised to obtain P1 non-conforming polynomials in each cell and thus constant strains and stresses in each cell. The method requires only the usual macroscopic parameters of a Cosserat material and no microscopic parameter. The mass matrix is naturally diagonal and thus allows fast dynamic computations. Numerical examples show the robustness of the method and that it converges at order one in energy norm similarly to the usual Lagrange P2-P1 mixed element. Also, the robustness of the method with respect to the incompressible limit {\nu} \to 0.5 is proved numerically.


翻译:在[Marazzato 等人,2020年]为动态 Elasto塑料计算开发的变异离散元件方法经过调整,以计算弹性Cosserat材料的动态进化。除了细胞偏移自由度(dofs)外,还添加了细胞自旋剂量。设计了一项重建,以获得每个单元格中不兼容的P1多元体,从而获得每个单元格中的常数株状和压力。该方法只需要Coserat物质通常的大型参数,而不需要微微分参数。质量矩阵是自然的对角,因此允许快速动态计算。数字示例显示了该方法的坚固性,并且该方法在能量规范中按顺序排列与通常的 Lagrange P2-P1 混合元素相似。此外,该方法在压强性限制 ~ nu} 至 0.5 方面的坚固性得到了量化。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
专知会员服务
61+阅读 · 2020年3月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员