We consider a fractional order viscoelasticity problem modelled by a power-law type stress relaxation function. This viscoelastic problem is a Volterra integral equation of the second kind with a weakly singular kernel where the convolution integral corresponds to fractional order differentiation/integration. We use a spatial finite element method and a finite difference scheme in time. Due to the weak singularity, fractional order integration in time is managed approximately by linear interpolation so that we can formulate a fully discrete problem. In this paper, we present a stability bound as well as a priori error estimates. Furthermore, we carry out numerical experiments with varying regularity of exact solutions at the end.
翻译:我们考虑的是以电法型压力放松功能为模型的分序相对弹性问题。 相对弹性问题是伏尔特拉的二类整体方程式,其中含有一个微弱的单核内核,其内核与分序差异/整合相对应。 我们使用空间有限元素法和时间上有限差异法。 由于单一性薄弱,分序整合时间由线性内插处理,这样我们就可以形成一个完全独立的问题。 在本文中,我们提出一个稳定性和先验性误差估计。 此外,我们还进行数字实验,在最终进行精确解决方案的规律性各不相同。