In this paper we study dispersive wave equation using the method of multiple scales (MMS) and perform several numerical tests to investigate its accuracy. The key feature of our MMS solution is the linearity of the amplitude equation and the complex nature of the time-frequency. The MMS is tested as an initial value problem using three choices of the dispersion model, one toy and two Lorentz models. Depending on the parameters of the problem, the amplitude equation can be both well- or ill-posed. Despite the ill-posedness, the MMS solution remains a valid approximation of the solution to the original nonlinear model.
翻译:在本文中,我们使用多尺度方法研究分散波方程,并进行若干数字测试,以调查其准确性。我们的移动波方程解决方案的关键特征是振幅方程的直线性和时间-频率的复杂性质。MMS作为初始值问题,使用三种分散模型、一种玩具和两种洛伦茨模型进行测试。视问题参数而定,振幅方程可以是井然的,也可以是错的。尽管存在错误,但移动波方程解决方案仍然是原非线性模型解决方案的有效近似。