This paper studies numerical methods for the approximation of elliptic PDEs with lognormal coefficients of the form $-{\rm div}(a\nabla u)=f$ where $a=\exp(b)$ and $b$ is a Gaussian random field. The approximant of the solution $u$ is an $n$-term polynomial expansion in the scalar Gaussian random variables that parametrize $b$. We present a general convergence analysis of weighted least-squares approximants for smooth and arbitrarily rough random field, using a suitable random design, for which we prove optimality in the following sense: their convergence rate matches exactly or closely the rate that has been established in \cite{BCDM} for best $n$-term approximation by Hermite polynomials, under the same minimial assumptions on the Gaussian random field. This is in contrast with the current state of the art results for the stochastic Galerkin method that suffers the lack of coercivity due to the lognormal nature of the diffusion field. Numerical tests with $b$ as the Brownian bridge confirm our theoretical findings.
翻译:本文研究以 $- {rm div} (a\ nabla u) = f$ f$ 的对数系数近似椭圆形 PDE 的数值方法, 其形式为 $_ exp (b) 美元 和 $b 美元 是一个高斯随机字段。 解决方案的约合 $u 美元 是 标标标的随机变量中 $n$- 美元 的永久性多元性扩展 。 我们对平滑和任意粗糙随机字段的加权最低方位近似值进行了总体趋同分析, 采用了一种适当的随机设计, 对此我们从以下意义上证明是最佳的: 它们的趋同率与 Hermite 聚点 确定的最佳 $- 长期近似率完全或接近 。 这是在高斯随机域的同一微米假设下, 与 高斯随机域 的 。 这与目前测量高尔金 方法的艺术结果的状态形成对比, 该方法缺乏焦量加勒金 方法的精确度, 是因为我们进行了 的理论性测试。