We give a general framework for inference in spanning tree models. We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models. Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms. These algorithms are easy to implement with or without automatic differentiation software. We motivate the development of our framework with several \emph{cautionary tales} of previous research, which has developed numerous inefficient algorithms for computing expectations and their gradients. We demonstrate how our framework efficiently computes several quantities with known algorithms, including the expected attachment score, entropy, and generalized expectation criteria. As a bonus, we give algorithms for quantities that are missing in the literature, including the KL divergence. In all cases, our approach matches the efficiency of existing algorithms and, in several cases, reduces the runtime complexity by a factor of the sentence length. We validate the implementation of our framework through runtime experiments. We find our algorithms are up to 15 and 9 times faster than previous algorithms for computing the Shannon entropy and the gradient of the generalized expectation objective, respectively.


翻译:我们为横跨树形模型的推断提供一个总体框架。 我们为一阶期望和二阶期望的重要案例提出统一的算法。 我们的算法利用梯度和期望之间的根本联系,从而使我们能够获得高效的算法。 这些算法很容易用自动区分软件来实施。 我们用以前研究的几种计算期望和梯度的参数来激励我们的框架的开发。 我们通过运行时间实验来验证我们框架的执行情况。 我们发现我们的框架有效地用已知的算法计算了若干数量,包括预期的附加评分、英特普和普遍预期标准。 作为奖金,我们为文献中缺失的数量提供算法,包括KL差异。 在所有情况下,我们的方法都与现有算法的效率相匹配,并在一些情况下,通过句号长度的一个因素来降低运行的复杂时间。 我们通过运行时间实验来验证我们框架的执行情况。 我们发现,我们的算法比普通化和香农金色的预期值分别高出15至9倍。

0
下载
关闭预览

相关内容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系统编译器、体系结构和综合国际会议。 Publisher:ACM。 SIT: http://dblp.uni-trier.de/db/conf/cases/index.html
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
【Manning新书】现代Java实战,592页pdf
专知会员服务
99+阅读 · 2020年5月22日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
专知会员服务
159+阅读 · 2020年1月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年2月8日
Arxiv
31+阅读 · 2020年9月21日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2018年3月21日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员