We present a novel target-based lidar-camera extrinsic calibration methodology that can be used for non-overlapping field of view (FOV) sensors. Contrary to previous work, our methodology overcomes the non-overlapping FOV challenge using a motion capture system (MCS) instead of traditional simultaneous localization and mapping approaches. Due to the high relative precision of MCSs, our methodology can achieve both the high accuracy and repeatable calibrations common to traditional target-based methods, regardless of the amount of overlap in the sensors' field of view. Furthermore, we design a target-agnostic implementation that does not require uniquely identifiable features by using an iterative closest point approach, enabled by the MSC measurements. We show using simulation that we can accurately recover extrinsic calibrations for a range of perturbations to the true calibration that would be expected in real circumstances. We prove experimentally that our method out-performs state-of-the-art lidar-camera extrinsic calibration methods that can be used for non-overlapping FOV systems, while using a target-based approach that guarantees repeatably high accuracy. Lastly, we show in simulation that different target designs can be used, including easily constructed 3D targets such as a cylinder that are normally considered degenerate in most calibration formulations.
翻译:暂无翻译