Mining structural priors in data is a widely recognized technique for hyperspectral image (HSI) denoising tasks, whose typical ways include model-based methods and data-based methods. The model-based methods have good generalization ability, while the runtime cannot meet the fast processing requirements of the practical situations due to the large size of an HSI data $ \mathbf{X} \in \mathbb{R}^{MN\times B}$. For the data-based methods, they perform very fast on new test data once they have been trained. However, their generalization ability is always insufficient. In this paper, we propose a fast model-based HSI denoising approach. Specifically, we propose a novel regularizer named Representative Coefficient Total Variation (RCTV) to simultaneously characterize the low rank and local smooth properties. The RCTV regularizer is proposed based on the observation that the representative coefficient matrix $\mathbf{U}\in\mathbb{R}^{MN\times R} (R\ll B)$ obtained by orthogonally transforming the original HSI $\mathbf{X}$ can inherit the strong local-smooth prior of $\mathbf{X}$. Since $R/B$ is very small, the HSI denoising model based on the RCTV regularizer has lower time complexity. Additionally, we find that the representative coefficient matrix $\mathbf{U}$ is robust to noise, and thus the RCTV regularizer can somewhat promote the robustness of the HSI denoising model. Extensive experiments on mixed noise removal demonstrate the superiority of the proposed method both in denoising performance and denoising speed compared with other state-of-the-art methods. Remarkably, the denoising speed of our proposed method outperforms all the model-based techniques and is comparable with the deep learning-based approaches.


翻译:数据中的采矿结构前端是被广泛承认的超光谱图像( HISI) 去除任务的技术, 典型的方法包括基于模型的方法和基于数据的方法。 基于模型的方法具有很好的概括能力, 而运行时间无法满足实际情况下的快速处理要求, 因为 HSI 数据规模很大 $\ mathbf{X} 在 mathbb{ R ⁇ MN\ times B} 。 对于基于数据的方法, 它们一旦经过培训, 它们就会在新的测试数据上运行非常快。 然而, 它们的总化能力总是不够。 在本文中, 我们提出一个基于快速模型的基于 HSI 方法的快速性能, 而运行时间不能满足实际情况的快速处理要求 。 RCTV 依据以下观察建议: 具有代表性的系数矩阵 $mathb{ Uncreax} 模型基于所有基于模型的 Rmathbbb{ RNMY{ RN\tib} R\ll B) 方法, 它们总能力总是不够。 我们的普通化的基于原始的HSI $ $\\\\\\ demax deal smoudal roal slation 方法, mode demodeal smodeal sweal modeal lade lad lad lax the sweal sweal lax romode lade s lad de de de lad s s be s be lax be lax be supal romod lad de de de romode lad lad lade lad rogy lad lad rogy rog rogy rogy lax be s be s be be be be be be be be be be s real de s laut laut laut su su lauts m sub laut the s mal de lautd laut the s be be s be s be s be s be de de de de de de de de de de de de de de de de de de de de de de h be de de de de de d laut the de de d ex a mal de de de de de de de de de de de

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Arxiv
0+阅读 · 2022年12月23日
Arxiv
14+阅读 · 2021年3月10日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员