The ordinary spectrum is restricted in its applications, since it is based on the second order moments (auto and cross-covariances). Alternative approaches to spectrum analysis have been investigated based on other measures of dependence. One such approach was developed for univariate time series by the authors of this paper using the local Gaussian auto-spectrum based on the local Gaussian auto-correlations. This makes it possible to detect local structures in univariate time series that looks like white noise when investigated by the ordinary auto-spectrum. In this paper the local Gaussian approach is extended to a local Gaussian cross-spectrum for multivariate time series. The local Gaussian cross-spectrum has the desirable property that it coincides with the ordinary cross-spectrum for Gaussian time series, which implies that it can be used to detect non-Gaussian traits in the time series under investigation. In particular: If the ordinary spectrum is flat, then peaks and troughs of the local Gaussian spectrum can indicate nonlinear traits, which potentially might reveal local periodic phenomena that goes undetected in an ordinary spectral analysis.
翻译:普通频谱在应用中受到限制, 因为普通频谱基于第二顺序时刻( 自动和交叉变量) 。 根据其他依赖度测量, 对频谱分析的替代方法进行了调查 。 本文作者根据本地高萨自动交点关系, 使用本地高萨自动频谱, 为单向时间序列开发了一种这种方法 。 这意味着可以用单向时间序列来检测本地结构, 当普通自动频谱调查时, 它看起来像白色噪声 。 本文中, 本地高斯分析方法扩展至本地高斯交叉频时间序列。 本地高斯交叉频谱具有它与普通高斯时间序列普通交叉频谱相吻合的可取属性 。 这意味着它可以用于在调查的时间序列中检测非加西亚时间序列中的非加西语特征 。 特别是: 如果普通频谱平坦, 那么本地高斯频谱的本地高斯跨频谱将扩展至本地高斯频谱中可能显示非星系的定期现象分析。