In this work, we present a novel scheduling framework enabling anytime perception for deep neural network (DNN) based 3D object detection pipelines. We focus on computationally expensive region proposal network (RPN) and per-category multi-head detector components, which are common in 3D object detection pipelines, and make them deadline-aware. We propose a scheduling algorithm, which intelligently selects the subset of the components to make effective time and accuracy trade-off on the fly. We minimize accuracy loss of skipping some of the neural network sub-components by projecting previously detected objects onto the current scene through estimations. We apply our approach to a state-of-art 3D object detection network, PointPillars, and evaluate its performance on Jetson Xavier AGX using nuScenes dataset. Compared to the baselines, our approach significantly improve the network's accuracy under various deadline constraints.
翻译:在这项工作中,我们提出了一个新的时间安排框架,使基于3D物体探测管道的深神经网络(DNN)能够随时感知到基于3D物体探测管道的深神经网络(DNN),我们侧重于计算昂贵的区域建议网络(RPN)和每类多头探测器部件,这在3D物体探测管道中是常见的,并使它们达到最后期限。我们提出一个时间安排算法,明智地选择部件的子集,以便在飞行上进行有效的时间和准确的交换。我们通过估计将以前探测到的物体投射到当前现场,从而最大限度地减少这些神经网络子部件的准确性损失。我们采用的方法,利用nuscenes数据集,对最先进的3D物体探测网络(PointPillars)应用了我们的方法,并评估其在Jetson Xavier AGX上的性能。与基线相比,我们的方法在各种期限限制下大大改进了网络的准确性。