The rapid evolution of smart cities has increased the reliance on intelligent interconnected services to optimize infrastructure, resources, and citizen well-being. Agentic AI has emerged as a key enabler by supporting autonomous decision-making and adaptive coordination, allowing urban systems to respond in real time to dynamic conditions. Its benefits are evident in areas such as transportation, where the integration of traffic data, weather forecasts, and safety sensors enables dynamic rerouting and a faster response to hazards. However, its deployment across heterogeneous smart city ecosystems raises critical governance, risk, and compliance (GRC) challenges, including accountability, data privacy, and regulatory alignment within decentralized infrastructures. Evaluation of SORA-ATMAS with three domain agents (Weather, Traffic, and Safety) demonstrated that its governance policies, including a fallback mechanism for high-risk scenarios, effectively steer multiple LLMs (GPT, Grok, DeepSeek) towards domain-optimized, policy-aligned outputs, producing an average MAE reduction of 35% across agents. Results showed stable weather monitoring, effective handling of high-risk traffic plateaus 0.85, and adaptive trust regulation in Safety/Fire scenarios 0.65. Runtime profiling of a 3-agent deployment confirmed scalability, with throughput between 13.8-17.2 requests per second, execution times below 72~ms, and governance delays under 100 ms, analytical projections suggest maintained performance at larger scales. Cross-domain rules ensured safe interoperability, with traffic rerouting permitted only under validated weather conditions. These findings validate SORA-ATMAS as a regulation-aligned, context-aware, and verifiable governance framework that consolidates distributed agent outputs into accountable, real-time decisions, offering a resilient foundation for smart-city management.
翻译:暂无翻译