A Regret Minimizing Set (RMS) is a useful concept in which a smaller subset of a database is selected while mostly preserving the best scores along every possible utility function. In this paper, we study the $k$-Regret Minimizing Sets ($k$-RMS) and Average Regret Minimizing Sets (ARMS) problems. $k$-RMS selects $r$ records from a database such that the maximum regret ratio between the $k$-th best score in the database and the best score in the selected records for any possible utility function is minimized. Meanwhile, ARMS minimizes the average of this ratio within a distribution of utility functions. Particularly, we study approximation algorithms for $k$-RMS and ARMS from the perspective of approximating the happiness ratio, which is equivalent to one minus the regret ratio. In this paper, we show that the problem of approximating the happiness of a $k$-RMS within any finite factor is NP-Hard when the dimensionality of the database is unconstrained and extend the result to an inapproximability proof for the regret. We then provide approximation algorithms for approximating the happiness of ARMS with better approximation ratios and time complexities than known algorithms for approximating the regret. We further provide dataset reduction schemes which can be used to reduce the runtime of existing heuristic based algorithms, as well as to derive polynomial-time approximation schemes for $k$-RMS when dimensionality is fixed. Finally, we provide experimental validation.


翻译:遗憾最小化设置( RMS) 是一个有用的概念, 选择一个数据库中一个较小的子集, 同时又能保存每个可能的公用事业功能中的最佳分数。 在本文中, 我们研究了美元- 地区最小化设置( k$- RMS) 和平均遗憾最小化设置( ARMS) 问题。 $k$- RMS 从数据库中选择了美元记录, 使数据库中美元- 最高分和所选记录中任何可能的公用事业功能的最大分数之间的最大遗憾率最小化。 与此同时, ARMS 最大限度地减少公用事业功能分配中这一比率的平均值。 特别是, 我们从接近幸福率的角度研究美元- RMS( 美元- RMS) 的近似算算法, 这相当于遗憾率 。 在本文件中, 当数据库的多维度不兼容性时, 最大遗憾率可以降低美元- 。 然后, 我们用精确的算算算算法, 以更精确的精确性证明 。 我们用正确的算算算算, 当数据库的准确性时, 我们提供更精确的精确的精确的精确度,, 以更精确的精确的精确的精确的算,, 以提供更精确的精确的精确的,,, 以提供我们用来降低 的精确的精确的精确的精确的, 。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员