A Regret Minimizing Set (RMS) is a useful concept in which a smaller subset of a database is selected while mostly preserving the best scores along every possible utility function. In this paper, we study the $k$-Regret Minimizing Sets ($k$-RMS) and Average Regret Minimizing Sets (ARMS) problems. $k$-RMS selects $r$ records from a database such that the maximum regret ratio between the $k$-th best score in the database and the best score in the selected records for any possible utility function is minimized. Meanwhile, ARMS minimizes the average of this ratio within a distribution of utility functions. Particularly, we study approximation algorithms for $k$-RMS and ARMS from the perspective of approximating the happiness ratio, which is equivalent to one minus the regret ratio. In this paper, we show that the problem of approximating the happiness of a $k$-RMS within any finite factor is NP-Hard when the dimensionality of the database is unconstrained and extend the result to an inapproximability proof for the regret. We then provide approximation algorithms for approximating the happiness of ARMS with better approximation ratios and time complexities than known algorithms for approximating the regret. We further provide dataset reduction schemes which can be used to reduce the runtime of existing heuristic based algorithms, as well as to derive polynomial-time approximation schemes for $k$-RMS when dimensionality is fixed. Finally, we provide experimental validation.
翻译:遗憾最小化设置( RMS) 是一个有用的概念, 选择一个数据库中一个较小的子集, 同时又能保存每个可能的公用事业功能中的最佳分数。 在本文中, 我们研究了美元- 地区最小化设置( k$- RMS) 和平均遗憾最小化设置( ARMS) 问题。 $k$- RMS 从数据库中选择了美元记录, 使数据库中美元- 最高分和所选记录中任何可能的公用事业功能的最大分数之间的最大遗憾率最小化。 与此同时, ARMS 最大限度地减少公用事业功能分配中这一比率的平均值。 特别是, 我们从接近幸福率的角度研究美元- RMS( 美元- RMS) 的近似算算法, 这相当于遗憾率 。 在本文件中, 当数据库的多维度不兼容性时, 最大遗憾率可以降低美元- 。 然后, 我们用精确的算算算算法, 以更精确的精确性证明 。 我们用正确的算算算算, 当数据库的准确性时, 我们提供更精确的精确的精确的精确度,, 以更精确的精确的精确的精确的算,, 以提供更精确的精确的精确的,,, 以提供我们用来降低 的精确的精确的精确的精确的, 。