We describe a new approach to derive numerical approximations of boundary conditions for high-order accurate finite-difference approximations. The approach, called the Local Compatibility Boundary Condition (LCBC) method, uses boundary conditions and compatibility boundary conditions derived from the governing equations, as well as interior and boundary grid values, to construct a local polynomial, whose degree matches the order of accuracy of the interior scheme, centered at each boundary point. The local polynomial is then used to derive a discrete formula for each ghost point in terms of the data. This approach leads to centered approximations that are generally more accurate and stable than one-sided approximations. Moreover, the stencil approximations are local since they do not couple to neighboring ghost-point values which can occur with traditional compatibility conditions. The local polynomial is derived using continuous operators and derivatives which enables the automatic construction of stencil approximations at different orders of accuracy. The LCBC method is developed here for problems governed by second-order partial differential equations, and it is verified for a wide range of sample problems, both time-dependent and time-independent, in two space dimensions and for schemes up to sixth-order accuracy.


翻译:我们描述一种新的方法,为高阶准确的有限差异近似值得出边界条件的数字近似值。该方法称为本地兼容边界条件(LCBC)法,使用来自治理方程的边界条件和兼容边界条件以及内网和边界网格值,以构建一个本地多面体,其程度与内部图的精确度相符,以每个边界点为中心。然后,当地多面体用于从数据的角度为每个鬼点得出一个离散公式。该方法导致中心近似值普遍比片面近似值更准确和稳定。此外,超线近似是局部的,因为它们与相邻的幽点值不相配,而这种近似值与传统的兼容性条件不同。当地多面体是使用连续操作器和衍生物来生成的,从而能够按不同准确度自动构建超线近似值。LCBC方法是针对第二级部分差异方程式所制约的问题而在这里开发的。该方法被核实为第六个样本范围的问题,既取决于时间,又取决于两个空间的精确度,又取决于两个空间层面。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年7月15日
VIP会员
相关VIP内容
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员